import pandas as pd
import numpy as np
11 Pandas
Pandas is a library for storing and manipulating tabular data, or data stored in rows and columns like a spreadsheet. Pandas is a huge library with many different functions and methods, so what follows is a brief introduction to the most important functions for data management.
If you encounter any part of Pandas out in the wild that you don’t see here, you can always refer to the Pandas documentation.
11.1 DataFrames and Series
Instead of normal Python lists and dictionaries, Pandas stores data in its own specialized objects. The main one is a DataFrame, which is a lot like a spreadsheet with rows and columns.
You can create a DataFrame directly with the DataFrame()
class in Pandas, but it’s more likely that you’ll read in a DataFrame from a CSV or spreadsheet file. First you must import the library, and it’s a good idea to import the numpy
library as well.
Numpy is a Python library for efficiently handling arrays and matrices of numbers. Pandas uses it under the hood to run quickly. You usually won’t need to use it directly, but it’s good to have it installed to avoid any mysterious errors.
Now you can use the read_csv()
function to read in a comma-separated value (CSV) spreadsheet file. You must put the name of this file in quotes, and the file should be in the same directory as your Jupyter notebook (or else you should include a full path). The read_csv()
function will also accept a URL that points to a CSV file online.
For this example, we’ll use the file mpg.csv
which comes from R’s ggplot2 library.
= pd.read_csv("../data/mpg.csv")
mpg mpg
manufacturer | model | displ | year | cyl | trans | drv | cty | hwy | fl | class | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | audi | a4 | 1.8 | 1999 | 4 | auto(l5) | f | 18 | 29 | p | compact |
1 | audi | a4 | 1.8 | 1999 | 4 | manual(m5) | f | 21 | 29 | p | compact |
2 | audi | a4 | 2.0 | 2008 | 4 | manual(m6) | f | 20 | 31 | p | compact |
3 | audi | a4 | 2.0 | 2008 | 4 | auto(av) | f | 21 | 30 | p | compact |
4 | audi | a4 | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p | compact |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
229 | volkswagen | passat | 2.0 | 2008 | 4 | auto(s6) | f | 19 | 28 | p | midsize |
230 | volkswagen | passat | 2.0 | 2008 | 4 | manual(m6) | f | 21 | 29 | p | midsize |
231 | volkswagen | passat | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p | midsize |
232 | volkswagen | passat | 2.8 | 1999 | 6 | manual(m5) | f | 18 | 26 | p | midsize |
233 | volkswagen | passat | 3.6 | 2008 | 6 | auto(s6) | f | 17 | 26 | p | midsize |
234 rows × 11 columns
Jupyter nicely formats DataFrames as tables when you type the name of a variable containing a DataFrame. But if you use the print()
function, it won’t display as well.
You can get basic information about your DataFrames columns using the .info()
method.
mpg.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 234 entries, 0 to 233
Data columns (total 11 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 manufacturer 234 non-null object
1 model 234 non-null object
2 displ 234 non-null float64
3 year 234 non-null int64
4 cyl 234 non-null int64
5 trans 234 non-null object
6 drv 234 non-null object
7 cty 234 non-null int64
8 hwy 234 non-null int64
9 fl 234 non-null object
10 class 234 non-null object
dtypes: float64(1), int64(4), object(6)
memory usage: 20.2+ KB
A Series is a lot like a Python list, and each column of a DataFrame is a Series. You can access the columns of a Dataframe with dot notation.
mpg.model
0 a4
1 a4
2 a4
3 a4
4 a4
...
229 passat
230 passat
231 passat
232 passat
233 passat
Name: model, Length: 234, dtype: object
You can also turn a list into a Series with the Series()
class.
= pd.Series([5, 6, 7, 8])
myseries myseries
0 5
1 6
2 7
3 8
dtype: int64
11.2 Selecting Rows and Columns
Once you have a DataFrame, you’ll typically want to filter and select different rows or columns.
To filter specific rows, Pandas uses a bracket notation. It takes conditional statements that are similar to Python conditions.
# Get cars with fewer than 6 cylinders
= mpg[mpg.cyl < 6]
four_cylinders four_cylinders
manufacturer | model | displ | year | cyl | trans | drv | cty | hwy | fl | class | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | audi | a4 | 1.8 | 1999 | 4 | auto(l5) | f | 18 | 29 | p | compact |
1 | audi | a4 | 1.8 | 1999 | 4 | manual(m5) | f | 21 | 29 | p | compact |
2 | audi | a4 | 2.0 | 2008 | 4 | manual(m6) | f | 20 | 31 | p | compact |
3 | audi | a4 | 2.0 | 2008 | 4 | auto(av) | f | 21 | 30 | p | compact |
7 | audi | a4 quattro | 1.8 | 1999 | 4 | manual(m5) | 4 | 18 | 26 | p | compact |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
226 | volkswagen | new beetle | 2.5 | 2008 | 5 | auto(s6) | f | 20 | 29 | r | subcompact |
227 | volkswagen | passat | 1.8 | 1999 | 4 | manual(m5) | f | 21 | 29 | p | midsize |
228 | volkswagen | passat | 1.8 | 1999 | 4 | auto(l5) | f | 18 | 29 | p | midsize |
229 | volkswagen | passat | 2.0 | 2008 | 4 | auto(s6) | f | 19 | 28 | p | midsize |
230 | volkswagen | passat | 2.0 | 2008 | 4 | manual(m6) | f | 21 | 29 | p | midsize |
85 rows × 11 columns
You can also use the operators &
(and), |
(or), and !
(not) to combine conditional filters.
# Get Volkswagens and Fords
= mpg[(mpg.manufacturer == 'volkswagen') | (mpg.manufacturer == 'ford')]
vw_ford vw_ford
manufacturer | model | displ | year | cyl | trans | drv | cty | hwy | fl | class | |
---|---|---|---|---|---|---|---|---|---|---|---|
74 | ford | expedition 2wd | 4.6 | 1999 | 8 | auto(l4) | r | 11 | 17 | r | suv |
75 | ford | expedition 2wd | 5.4 | 1999 | 8 | auto(l4) | r | 11 | 17 | r | suv |
76 | ford | expedition 2wd | 5.4 | 2008 | 8 | auto(l6) | r | 12 | 18 | r | suv |
77 | ford | explorer 4wd | 4.0 | 1999 | 6 | auto(l5) | 4 | 14 | 17 | r | suv |
78 | ford | explorer 4wd | 4.0 | 1999 | 6 | manual(m5) | 4 | 15 | 19 | r | suv |
79 | ford | explorer 4wd | 4.0 | 1999 | 6 | auto(l5) | 4 | 14 | 17 | r | suv |
80 | ford | explorer 4wd | 4.0 | 2008 | 6 | auto(l5) | 4 | 13 | 19 | r | suv |
81 | ford | explorer 4wd | 4.6 | 2008 | 8 | auto(l6) | 4 | 13 | 19 | r | suv |
82 | ford | explorer 4wd | 5.0 | 1999 | 8 | auto(l4) | 4 | 13 | 17 | r | suv |
83 | ford | f150 pickup 4wd | 4.2 | 1999 | 6 | auto(l4) | 4 | 14 | 17 | r | pickup |
84 | ford | f150 pickup 4wd | 4.2 | 1999 | 6 | manual(m5) | 4 | 14 | 17 | r | pickup |
85 | ford | f150 pickup 4wd | 4.6 | 1999 | 8 | manual(m5) | 4 | 13 | 16 | r | pickup |
86 | ford | f150 pickup 4wd | 4.6 | 1999 | 8 | auto(l4) | 4 | 13 | 16 | r | pickup |
87 | ford | f150 pickup 4wd | 4.6 | 2008 | 8 | auto(l4) | 4 | 13 | 17 | r | pickup |
88 | ford | f150 pickup 4wd | 5.4 | 1999 | 8 | auto(l4) | 4 | 11 | 15 | r | pickup |
89 | ford | f150 pickup 4wd | 5.4 | 2008 | 8 | auto(l4) | 4 | 13 | 17 | r | pickup |
90 | ford | mustang | 3.8 | 1999 | 6 | manual(m5) | r | 18 | 26 | r | subcompact |
91 | ford | mustang | 3.8 | 1999 | 6 | auto(l4) | r | 18 | 25 | r | subcompact |
92 | ford | mustang | 4.0 | 2008 | 6 | manual(m5) | r | 17 | 26 | r | subcompact |
93 | ford | mustang | 4.0 | 2008 | 6 | auto(l5) | r | 16 | 24 | r | subcompact |
94 | ford | mustang | 4.6 | 1999 | 8 | auto(l4) | r | 15 | 21 | r | subcompact |
95 | ford | mustang | 4.6 | 1999 | 8 | manual(m5) | r | 15 | 22 | r | subcompact |
96 | ford | mustang | 4.6 | 2008 | 8 | manual(m5) | r | 15 | 23 | r | subcompact |
97 | ford | mustang | 4.6 | 2008 | 8 | auto(l5) | r | 15 | 22 | r | subcompact |
98 | ford | mustang | 5.4 | 2008 | 8 | manual(m6) | r | 14 | 20 | p | subcompact |
207 | volkswagen | gti | 2.0 | 1999 | 4 | manual(m5) | f | 21 | 29 | r | compact |
208 | volkswagen | gti | 2.0 | 1999 | 4 | auto(l4) | f | 19 | 26 | r | compact |
209 | volkswagen | gti | 2.0 | 2008 | 4 | manual(m6) | f | 21 | 29 | p | compact |
210 | volkswagen | gti | 2.0 | 2008 | 4 | auto(s6) | f | 22 | 29 | p | compact |
211 | volkswagen | gti | 2.8 | 1999 | 6 | manual(m5) | f | 17 | 24 | r | compact |
212 | volkswagen | jetta | 1.9 | 1999 | 4 | manual(m5) | f | 33 | 44 | d | compact |
213 | volkswagen | jetta | 2.0 | 1999 | 4 | manual(m5) | f | 21 | 29 | r | compact |
214 | volkswagen | jetta | 2.0 | 1999 | 4 | auto(l4) | f | 19 | 26 | r | compact |
215 | volkswagen | jetta | 2.0 | 2008 | 4 | auto(s6) | f | 22 | 29 | p | compact |
216 | volkswagen | jetta | 2.0 | 2008 | 4 | manual(m6) | f | 21 | 29 | p | compact |
217 | volkswagen | jetta | 2.5 | 2008 | 5 | auto(s6) | f | 21 | 29 | r | compact |
218 | volkswagen | jetta | 2.5 | 2008 | 5 | manual(m5) | f | 21 | 29 | r | compact |
219 | volkswagen | jetta | 2.8 | 1999 | 6 | auto(l4) | f | 16 | 23 | r | compact |
220 | volkswagen | jetta | 2.8 | 1999 | 6 | manual(m5) | f | 17 | 24 | r | compact |
221 | volkswagen | new beetle | 1.9 | 1999 | 4 | manual(m5) | f | 35 | 44 | d | subcompact |
222 | volkswagen | new beetle | 1.9 | 1999 | 4 | auto(l4) | f | 29 | 41 | d | subcompact |
223 | volkswagen | new beetle | 2.0 | 1999 | 4 | manual(m5) | f | 21 | 29 | r | subcompact |
224 | volkswagen | new beetle | 2.0 | 1999 | 4 | auto(l4) | f | 19 | 26 | r | subcompact |
225 | volkswagen | new beetle | 2.5 | 2008 | 5 | manual(m5) | f | 20 | 28 | r | subcompact |
226 | volkswagen | new beetle | 2.5 | 2008 | 5 | auto(s6) | f | 20 | 29 | r | subcompact |
227 | volkswagen | passat | 1.8 | 1999 | 4 | manual(m5) | f | 21 | 29 | p | midsize |
228 | volkswagen | passat | 1.8 | 1999 | 4 | auto(l5) | f | 18 | 29 | p | midsize |
229 | volkswagen | passat | 2.0 | 2008 | 4 | auto(s6) | f | 19 | 28 | p | midsize |
230 | volkswagen | passat | 2.0 | 2008 | 4 | manual(m6) | f | 21 | 29 | p | midsize |
231 | volkswagen | passat | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p | midsize |
232 | volkswagen | passat | 2.8 | 1999 | 6 | manual(m5) | f | 18 | 26 | p | midsize |
233 | volkswagen | passat | 3.6 | 2008 | 6 | auto(s6) | f | 17 | 26 | p | midsize |
You can use a double bracket notation to select a subset of columns.
Using single brackets or dot notation will get you a single column as a Series.
= mpg[["class", "cty", "hwy"]]
class_cty_hwy class_cty_hwy
class | cty | hwy | |
---|---|---|---|
0 | compact | 18 | 29 |
1 | compact | 21 | 29 |
2 | compact | 20 | 31 |
3 | compact | 21 | 30 |
4 | compact | 16 | 26 |
... | ... | ... | ... |
229 | midsize | 19 | 28 |
230 | midsize | 21 | 29 |
231 | midsize | 16 | 26 |
232 | midsize | 18 | 26 |
233 | midsize | 17 | 26 |
234 rows × 3 columns
11.3 Data Wrangling
In addtion to selecting rows and columns from DataFrames, you can also use Pandas to do a wide variety of data transformations.
11.3.1 Sorting
"year", ascending=False) mpg.sort_values(
manufacturer | model | displ | year | cyl | trans | drv | cty | hwy | fl | class | |
---|---|---|---|---|---|---|---|---|---|---|---|
117 | hyundai | tiburon | 2.0 | 2008 | 4 | manual(m5) | f | 20 | 28 | r | subcompact |
120 | hyundai | tiburon | 2.7 | 2008 | 6 | manual(m6) | f | 16 | 24 | r | subcompact |
122 | jeep | grand cherokee 4wd | 3.0 | 2008 | 6 | auto(l5) | 4 | 17 | 22 | d | suv |
123 | jeep | grand cherokee 4wd | 3.7 | 2008 | 6 | auto(l5) | 4 | 15 | 19 | r | suv |
126 | jeep | grand cherokee 4wd | 4.7 | 2008 | 8 | auto(l5) | 4 | 9 | 12 | e | suv |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
130 | land rover | range rover | 4.0 | 1999 | 8 | auto(l4) | 4 | 11 | 15 | p | suv |
50 | dodge | dakota pickup 4wd | 3.9 | 1999 | 6 | auto(l4) | 4 | 13 | 17 | r | pickup |
51 | dodge | dakota pickup 4wd | 3.9 | 1999 | 6 | manual(m5) | 4 | 14 | 17 | r | pickup |
125 | jeep | grand cherokee 4wd | 4.7 | 1999 | 8 | auto(l4) | 4 | 14 | 17 | r | suv |
0 | audi | a4 | 1.8 | 1999 | 4 | auto(l5) | f | 18 | 29 | p | compact |
234 rows × 11 columns
11.3.2 Counting
"manufacturer") mpg.value_counts(
manufacturer
dodge 37
toyota 34
volkswagen 27
ford 25
chevrolet 19
audi 18
hyundai 14
subaru 14
nissan 13
honda 9
jeep 8
pontiac 5
land rover 4
mercury 4
lincoln 3
Name: count, dtype: int64
11.3.3 Renaming Columns
# Note the use of a Python dictionary as this method's argument
= mpg.rename({"cty":"city", "hwy": "highway"})
mpg mpg
manufacturer | model | displ | year | cyl | trans | drv | cty | hwy | fl | class | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | audi | a4 | 1.8 | 1999 | 4 | auto(l5) | f | 18 | 29 | p | compact |
1 | audi | a4 | 1.8 | 1999 | 4 | manual(m5) | f | 21 | 29 | p | compact |
2 | audi | a4 | 2.0 | 2008 | 4 | manual(m6) | f | 20 | 31 | p | compact |
3 | audi | a4 | 2.0 | 2008 | 4 | auto(av) | f | 21 | 30 | p | compact |
4 | audi | a4 | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p | compact |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
229 | volkswagen | passat | 2.0 | 2008 | 4 | auto(s6) | f | 19 | 28 | p | midsize |
230 | volkswagen | passat | 2.0 | 2008 | 4 | manual(m6) | f | 21 | 29 | p | midsize |
231 | volkswagen | passat | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p | midsize |
232 | volkswagen | passat | 2.8 | 1999 | 6 | manual(m5) | f | 18 | 26 | p | midsize |
233 | volkswagen | passat | 3.6 | 2008 | 6 | auto(s6) | f | 17 | 26 | p | midsize |
234 rows × 11 columns
11.3.4 Create new columns
You can use assign()
to create new columns based on existing ones.
= mpg.assign(displ_per_cyl = mpg.displ/mpg.cyl)
mpg mpg
manufacturer | model | displ | year | cyl | trans | drv | cty | hwy | fl | class | displ_per_cyl | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | audi | a4 | 1.8 | 1999 | 4 | auto(l5) | f | 18 | 29 | p | compact | 0.450000 |
1 | audi | a4 | 1.8 | 1999 | 4 | manual(m5) | f | 21 | 29 | p | compact | 0.450000 |
2 | audi | a4 | 2.0 | 2008 | 4 | manual(m6) | f | 20 | 31 | p | compact | 0.500000 |
3 | audi | a4 | 2.0 | 2008 | 4 | auto(av) | f | 21 | 30 | p | compact | 0.500000 |
4 | audi | a4 | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p | compact | 0.466667 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
229 | volkswagen | passat | 2.0 | 2008 | 4 | auto(s6) | f | 19 | 28 | p | midsize | 0.500000 |
230 | volkswagen | passat | 2.0 | 2008 | 4 | manual(m6) | f | 21 | 29 | p | midsize | 0.500000 |
231 | volkswagen | passat | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p | midsize | 0.466667 |
232 | volkswagen | passat | 2.8 | 1999 | 6 | manual(m5) | f | 18 | 26 | p | midsize | 0.466667 |
233 | volkswagen | passat | 3.6 | 2008 | 6 | auto(s6) | f | 17 | 26 | p | midsize | 0.600000 |
234 rows × 12 columns
11.3.5 Grouping and Summarizing
This combines a couple functions that exist within Pandas to create summary tables.
Pandas has a wide range of summary statistics that you can apply to individual columns.
# Average city fuel efficiency
mpg.cty.mean()
np.float64(16.858974358974358)
# Standard deviation of highway fuel efficiency
mpg.hwy.std()
np.float64(5.9546434411664455)
Pandas also has a .groupby()
method (which returns a generator) that groups categorical variables.
"manufacturer") mpg.groupby(
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x10a116630>
By itself, .groupby()
doesn’t show anything. It needs to be combined with a summary statistic to create a summary table.
# Averages by manufacturer
# set `numeric_only=True` to avoid a warning
"manufacturer").mean(numeric_only=True) mpg.groupby(
displ | year | cyl | cty | hwy | displ_per_cyl | |
---|---|---|---|---|---|---|
manufacturer | ||||||
audi | 2.544444 | 2003.500000 | 5.222222 | 17.611111 | 26.444444 | 0.484722 |
chevrolet | 5.063158 | 2004.684211 | 7.263158 | 15.000000 | 21.894737 | 0.686842 |
dodge | 4.378378 | 2004.108108 | 7.081081 | 13.135135 | 17.945946 | 0.616216 |
ford | 4.536000 | 2002.600000 | 7.200000 | 14.000000 | 19.360000 | 0.633667 |
honda | 1.711111 | 2003.000000 | 4.000000 | 24.444444 | 32.555556 | 0.427778 |
hyundai | 2.428571 | 2004.142857 | 4.857143 | 18.642857 | 26.857143 | 0.509524 |
jeep | 4.575000 | 2005.750000 | 7.250000 | 13.500000 | 17.625000 | 0.627604 |
land rover | 4.300000 | 2003.500000 | 8.000000 | 11.500000 | 16.500000 | 0.537500 |
lincoln | 5.400000 | 2002.000000 | 8.000000 | 11.333333 | 17.000000 | 0.675000 |
mercury | 4.400000 | 2003.500000 | 7.000000 | 13.250000 | 18.000000 | 0.633333 |
nissan | 3.269231 | 2003.846154 | 5.538462 | 18.076923 | 24.615385 | 0.589744 |
pontiac | 3.960000 | 2002.600000 | 6.400000 | 17.000000 | 26.400000 | 0.615833 |
subaru | 2.457143 | 2004.142857 | 4.000000 | 19.285714 | 25.571429 | 0.614286 |
toyota | 2.952941 | 2002.705882 | 5.117647 | 18.529412 | 24.911765 | 0.573897 |
volkswagen | 2.255556 | 2002.666667 | 4.592593 | 20.925926 | 29.222222 | 0.491049 |
11.3.6 Dropping Null Values
For many statistical modeling tasks, you need to drop rows that contain null values. Pandas lets you do this easily with .dropna()
.
Pandas typically stores null values as NaN, which stands for “not a number.”
# Drop any row that contains a null value in any column
= mpg.dropna()
mpg mpg
manufacturer | model | displ | year | cyl | trans | drv | cty | hwy | fl | class | displ_per_cyl | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | audi | a4 | 1.8 | 1999 | 4 | auto(l5) | f | 18 | 29 | p | compact | 0.450000 |
1 | audi | a4 | 1.8 | 1999 | 4 | manual(m5) | f | 21 | 29 | p | compact | 0.450000 |
2 | audi | a4 | 2.0 | 2008 | 4 | manual(m6) | f | 20 | 31 | p | compact | 0.500000 |
3 | audi | a4 | 2.0 | 2008 | 4 | auto(av) | f | 21 | 30 | p | compact | 0.500000 |
4 | audi | a4 | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p | compact | 0.466667 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
229 | volkswagen | passat | 2.0 | 2008 | 4 | auto(s6) | f | 19 | 28 | p | midsize | 0.500000 |
230 | volkswagen | passat | 2.0 | 2008 | 4 | manual(m6) | f | 21 | 29 | p | midsize | 0.500000 |
231 | volkswagen | passat | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p | midsize | 0.466667 |
232 | volkswagen | passat | 2.8 | 1999 | 6 | manual(m5) | f | 18 | 26 | p | midsize | 0.466667 |
233 | volkswagen | passat | 3.6 | 2008 | 6 | auto(s6) | f | 17 | 26 | p | midsize | 0.600000 |
234 rows × 12 columns
The mpg
dataset doesn’t contain any null values, so right now this code isn’t accomplishing anything. But it will work when null values are present!
You can also drop null values from only a subset of columns.
# Drop any rows that contain null values in a subset of columns
= mpg.dropna(subset=["model", "displ"])
mpg mpg
manufacturer | model | displ | year | cyl | trans | drv | cty | hwy | fl | class | displ_per_cyl | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | audi | a4 | 1.8 | 1999 | 4 | auto(l5) | f | 18 | 29 | p | compact | 0.450000 |
1 | audi | a4 | 1.8 | 1999 | 4 | manual(m5) | f | 21 | 29 | p | compact | 0.450000 |
2 | audi | a4 | 2.0 | 2008 | 4 | manual(m6) | f | 20 | 31 | p | compact | 0.500000 |
3 | audi | a4 | 2.0 | 2008 | 4 | auto(av) | f | 21 | 30 | p | compact | 0.500000 |
4 | audi | a4 | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p | compact | 0.466667 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
229 | volkswagen | passat | 2.0 | 2008 | 4 | auto(s6) | f | 19 | 28 | p | midsize | 0.500000 |
230 | volkswagen | passat | 2.0 | 2008 | 4 | manual(m6) | f | 21 | 29 | p | midsize | 0.500000 |
231 | volkswagen | passat | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p | midsize | 0.466667 |
232 | volkswagen | passat | 2.8 | 1999 | 6 | manual(m5) | f | 18 | 26 | p | midsize | 0.466667 |
233 | volkswagen | passat | 3.6 | 2008 | 6 | auto(s6) | f | 17 | 26 | p | midsize | 0.600000 |
234 rows × 12 columns
11.4 Sampling
Many statistical methods, especially hypothesis tests, require you to take a random sample of your overall data. Again, Pandas provides an easy way to do this with the .sample()
method.
You can take a sample of rows from an entire dataframe.
# Get 5 random rows from mpg
5) mpg.sample(
manufacturer | model | displ | year | cyl | trans | drv | cty | hwy | fl | class | displ_per_cyl | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
179 | toyota | camry | 2.2 | 1999 | 4 | manual(m5) | f | 21 | 29 | r | midsize | 0.550000 |
95 | ford | mustang | 4.6 | 1999 | 8 | manual(m5) | r | 15 | 22 | r | subcompact | 0.575000 |
118 | hyundai | tiburon | 2.0 | 2008 | 4 | auto(l4) | f | 20 | 27 | r | subcompact | 0.500000 |
86 | ford | f150 pickup 4wd | 4.6 | 1999 | 8 | auto(l4) | 4 | 13 | 16 | r | pickup | 0.575000 |
47 | dodge | caravan 2wd | 4.0 | 2008 | 6 | auto(l6) | f | 16 | 23 | r | minivan | 0.666667 |
You can also get a sample of a specific column.
# Get 5 sample engine displacement values, as a series
5) mpg.displ.sample(
60 4.7
158 5.3
220 2.8
146 3.5
0 1.8
Name: displ, dtype: float64
You can also sample with replacement. (This is also called “bootstrap sampling.”) This makes it possible to have the same value in your sample twice.
5, replace=True) mpg.displ.sample(
25 6.2
124 4.0
13 3.1
68 4.7
81 4.6
Name: displ, dtype: float64
Pandas will also let you get a fraction of values instead of a set number in your sample.
# Get a random sample of one twentieth the size of the dataset
=.05) mpg.sample(frac
manufacturer | model | displ | year | cyl | trans | drv | cty | hwy | fl | class | displ_per_cyl | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
64 | dodge | ram 1500 pickup 4wd | 4.7 | 2008 | 8 | manual(m6) | 4 | 12 | 16 | r | pickup | 0.587500 |
136 | lincoln | navigator 2wd | 5.4 | 2008 | 8 | auto(l6) | r | 12 | 18 | r | suv | 0.675000 |
138 | mercury | mountaineer 4wd | 4.0 | 2008 | 6 | auto(l5) | 4 | 13 | 19 | r | suv | 0.666667 |
223 | volkswagen | new beetle | 2.0 | 1999 | 4 | manual(m5) | f | 21 | 29 | r | subcompact | 0.500000 |
16 | audi | a6 quattro | 3.1 | 2008 | 6 | auto(s6) | 4 | 17 | 25 | p | midsize | 0.516667 |
186 | toyota | camry solara | 2.2 | 1999 | 4 | auto(l4) | f | 21 | 27 | r | compact | 0.550000 |
2 | audi | a4 | 2.0 | 2008 | 4 | manual(m6) | f | 20 | 31 | p | compact | 0.500000 |
133 | land rover | range rover | 4.6 | 1999 | 8 | auto(l4) | 4 | 11 | 15 | p | suv | 0.575000 |
1 | audi | a4 | 1.8 | 1999 | 4 | manual(m5) | f | 21 | 29 | p | compact | 0.450000 |
182 | toyota | camry | 2.4 | 2008 | 4 | auto(l5) | f | 21 | 31 | r | midsize | 0.600000 |
169 | subaru | impreza awd | 2.5 | 2008 | 4 | auto(s4) | 4 | 20 | 25 | p | compact | 0.625000 |
119 | hyundai | tiburon | 2.7 | 2008 | 6 | auto(l4) | f | 17 | 24 | r | subcompact | 0.450000 |
There’s one more trick you can do with sampling. Sometimes you don’t need to get a smaller random sample: instead, you just want to reshuffle every row of the dataset. You can do this by setting frac
to 1. In a way, you’re taking a random sample that is 100% of the size of the dataset! (But make sure you do this without replacement.)
=1) mpg.displ.sample(frac
123 3.7
210 2.0
12 2.8
212 1.9
77 4.0
...
88 5.4
169 2.5
232 2.8
222 1.9
72 5.7
Name: displ, Length: 234, dtype: float64
Pandas will remember the indices in your new Series, which means if you use this reordered sample it might put things back in order for you! To avoid this, you can reset the index and drop the old labels.
=1).reset_index(drop=True) mpg.displ.sample(frac
0 2.5
1 3.6
2 3.0
3 5.0
4 3.8
...
229 2.8
230 3.0
231 4.6
232 4.0
233 3.5
Name: displ, Length: 234, dtype: float64
11.5 Combining Datasets
11.5.1 Stack Data with Concatenation
If you have two datasets with identical columns but different rows, you can combine or “stack” the two datasets into one.
# Let's imagine we have two datasets.
# One for manual transmission cars:
= pd.read_csv("../data/manual.csv")
manual manual
manufacturer | model | displ | year | cyl | trans | drv | cty | hwy | fl | class | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | audi | a4 | 1.8 | 1999 | 4 | manual(m5) | f | 21 | 29 | p | compact |
1 | audi | a4 | 2.0 | 2008 | 4 | manual(m6) | f | 20 | 31 | p | compact |
2 | audi | a4 | 2.8 | 1999 | 6 | manual(m5) | f | 18 | 26 | p | compact |
3 | audi | a4 quattro | 1.8 | 1999 | 4 | manual(m5) | 4 | 18 | 26 | p | compact |
4 | audi | a4 quattro | 2.0 | 2008 | 4 | manual(m6) | 4 | 20 | 28 | p | compact |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
72 | volkswagen | new beetle | 2.0 | 1999 | 4 | manual(m5) | f | 21 | 29 | r | subcompact |
73 | volkswagen | new beetle | 2.5 | 2008 | 5 | manual(m5) | f | 20 | 28 | r | subcompact |
74 | volkswagen | passat | 1.8 | 1999 | 4 | manual(m5) | f | 21 | 29 | p | midsize |
75 | volkswagen | passat | 2.0 | 2008 | 4 | manual(m6) | f | 21 | 29 | p | midsize |
76 | volkswagen | passat | 2.8 | 1999 | 6 | manual(m5) | f | 18 | 26 | p | midsize |
77 rows × 11 columns
# And one for automatic transmissions:
= pd.read_csv("../data/automatic.csv")
automatic automatic
manufacturer | model | displ | year | cyl | trans | drv | cty | hwy | fl | class | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | audi | a4 | 1.8 | 1999 | 4 | auto(l5) | f | 18 | 29 | p | compact |
1 | audi | a4 | 2.0 | 2008 | 4 | auto(av) | f | 21 | 30 | p | compact |
2 | audi | a4 | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p | compact |
3 | audi | a4 | 3.1 | 2008 | 6 | auto(av) | f | 18 | 27 | p | compact |
4 | audi | a4 quattro | 1.8 | 1999 | 4 | auto(l5) | 4 | 16 | 25 | p | compact |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
152 | volkswagen | new beetle | 2.5 | 2008 | 5 | auto(s6) | f | 20 | 29 | r | subcompact |
153 | volkswagen | passat | 1.8 | 1999 | 4 | auto(l5) | f | 18 | 29 | p | midsize |
154 | volkswagen | passat | 2.0 | 2008 | 4 | auto(s6) | f | 19 | 28 | p | midsize |
155 | volkswagen | passat | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p | midsize |
156 | volkswagen | passat | 3.6 | 2008 | 6 | auto(s6) | f | 17 | 26 | p | midsize |
157 rows × 11 columns
# You can combine these into one with pd.concat()
= pd.concat([manual, automatic])
mpg_concat mpg_concat
manufacturer | model | displ | year | cyl | trans | drv | cty | hwy | fl | class | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | audi | a4 | 1.8 | 1999 | 4 | manual(m5) | f | 21 | 29 | p | compact |
1 | audi | a4 | 2.0 | 2008 | 4 | manual(m6) | f | 20 | 31 | p | compact |
2 | audi | a4 | 2.8 | 1999 | 6 | manual(m5) | f | 18 | 26 | p | compact |
3 | audi | a4 quattro | 1.8 | 1999 | 4 | manual(m5) | 4 | 18 | 26 | p | compact |
4 | audi | a4 quattro | 2.0 | 2008 | 4 | manual(m6) | 4 | 20 | 28 | p | compact |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
152 | volkswagen | new beetle | 2.5 | 2008 | 5 | auto(s6) | f | 20 | 29 | r | subcompact |
153 | volkswagen | passat | 1.8 | 1999 | 4 | auto(l5) | f | 18 | 29 | p | midsize |
154 | volkswagen | passat | 2.0 | 2008 | 4 | auto(s6) | f | 19 | 28 | p | midsize |
155 | volkswagen | passat | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p | midsize |
156 | volkswagen | passat | 3.6 | 2008 | 6 | auto(s6) | f | 17 | 26 | p | midsize |
234 rows × 11 columns
11.5.2 Switch Rows and Columns with Pivot and Melt
Sometimes your data isn’t tidy, and rows should be columns while columns should be rows. You can resolve these problems using Pandas’ “pivot” and “melt” concepts—this is similar to Pivot Tables in Excel.
# Let's imagine you have a dataset with column headings in the rows
= pd.read_csv("../data/melted_mpg.csv")
long_mpg long_mpg
manufacturer | model | year | trans | variable | value | |
---|---|---|---|---|---|---|
0 | audi | a4 | 1999 | auto(l5) | displ | 1.8 |
1 | audi | a4 | 1999 | manual(m5) | displ | 1.8 |
2 | audi | a4 | 2008 | manual(m6) | displ | 2.0 |
3 | audi | a4 | 2008 | auto(av) | displ | 2.0 |
4 | audi | a4 quattro | 1999 | manual(m5) | displ | 1.8 |
... | ... | ... | ... | ... | ... | ... |
968 | volkswagen | new beetle | 2008 | auto(s6) | class | subcompact |
969 | volkswagen | passat | 1999 | manual(m5) | class | midsize |
970 | volkswagen | passat | 1999 | auto(l5) | class | midsize |
971 | volkswagen | passat | 2008 | auto(s6) | class | midsize |
972 | volkswagen | passat | 2008 | manual(m6) | class | midsize |
973 rows × 6 columns
# Use pivot to turn the "variable" column into the column names
# You must specify which columns you want to retain as indices
# Make sure you add .reset_index()
= long_mpg.pivot(index=["manufacturer", "model", "year", "trans"], columns="variable", values="value").reset_index()
pivoted_mpg pivoted_mpg
variable | manufacturer | model | year | trans | class | cty | cyl | displ | drv | fl | hwy |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | audi | a4 | 1999 | auto(l5) | compact | 18 | 4 | 1.8 | f | p | 29 |
1 | audi | a4 | 1999 | manual(m5) | compact | 21 | 4 | 1.8 | f | p | 29 |
2 | audi | a4 | 2008 | auto(av) | compact | 21 | 4 | 2.0 | f | p | 30 |
3 | audi | a4 | 2008 | manual(m6) | compact | 20 | 4 | 2.0 | f | p | 31 |
4 | audi | a4 quattro | 1999 | auto(l5) | compact | 16 | 4 | 1.8 | 4 | p | 25 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
134 | volkswagen | new beetle | 2008 | manual(m5) | subcompact | 20 | 5 | 2.5 | f | r | 28 |
135 | volkswagen | passat | 1999 | auto(l5) | midsize | 18 | 4 | 1.8 | f | p | 29 |
136 | volkswagen | passat | 1999 | manual(m5) | midsize | 21 | 4 | 1.8 | f | p | 29 |
137 | volkswagen | passat | 2008 | auto(s6) | midsize | 19 | 4 | 2.0 | f | p | 28 |
138 | volkswagen | passat | 2008 | manual(m6) | midsize | 21 | 4 | 2.0 | f | p | 29 |
139 rows × 11 columns
# You can use .melt() to go in the opposite direction
# Again you must specify the columns you want to keep as indices
= pivoted_mpg.melt(id_vars = ["manufacturer", "model", "year", "trans"])
melted_mpg melted_mpg
manufacturer | model | year | trans | variable | value | |
---|---|---|---|---|---|---|
0 | audi | a4 | 1999 | auto(l5) | class | compact |
1 | audi | a4 | 1999 | manual(m5) | class | compact |
2 | audi | a4 | 2008 | auto(av) | class | compact |
3 | audi | a4 | 2008 | manual(m6) | class | compact |
4 | audi | a4 quattro | 1999 | auto(l5) | class | compact |
... | ... | ... | ... | ... | ... | ... |
968 | volkswagen | new beetle | 2008 | manual(m5) | hwy | 28 |
969 | volkswagen | passat | 1999 | auto(l5) | hwy | 29 |
970 | volkswagen | passat | 1999 | manual(m5) | hwy | 29 |
971 | volkswagen | passat | 2008 | auto(s6) | hwy | 28 |
972 | volkswagen | passat | 2008 | manual(m6) | hwy | 29 |
973 rows × 6 columns
11.5.3 Join Datasets with Merge
If your columns or rows don’t match exactly, you can’t use pd.concat()
. But you can still combine datasets with a database-style JOIN (just like in SQL!) using the pd.merge()
function.
This database-style combining of tables is really powerful, and it can get more complicated than what we have time to cover in this class. I recommend checking out McKinney Ch. 8.2 for more details, and this all is covered in much more detail in CIS 112!
# Let's assume you have a dataset without the vehicle class column
= pd.read_csv("../data/mpg_no_class.csv")
missing_mpg missing_mpg
manufacturer | model | displ | year | cyl | trans | drv | cty | hwy | fl | |
---|---|---|---|---|---|---|---|---|---|---|
0 | audi | a4 | 1.8 | 1999 | 4 | auto(l5) | f | 18 | 29 | p |
1 | audi | a4 | 1.8 | 1999 | 4 | manual(m5) | f | 21 | 29 | p |
2 | audi | a4 | 2.0 | 2008 | 4 | manual(m6) | f | 20 | 31 | p |
3 | audi | a4 | 2.0 | 2008 | 4 | auto(av) | f | 21 | 30 | p |
4 | audi | a4 | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
229 | volkswagen | passat | 2.0 | 2008 | 4 | auto(s6) | f | 19 | 28 | p |
230 | volkswagen | passat | 2.0 | 2008 | 4 | manual(m6) | f | 21 | 29 | p |
231 | volkswagen | passat | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p |
232 | volkswagen | passat | 2.8 | 1999 | 6 | manual(m5) | f | 18 | 26 | p |
233 | volkswagen | passat | 3.6 | 2008 | 6 | auto(s6) | f | 17 | 26 | p |
234 rows × 10 columns
# And you also have a dataset (with fewer rows) that has
# class info for each make and year of vehicle
= pd.read_csv("../data/mpg_class.csv")
class_mpg class_mpg
manufacturer | model | year | class | |
---|---|---|---|---|
0 | audi | a4 | 1999 | compact |
1 | audi | a4 | 2008 | compact |
2 | audi | a4 quattro | 1999 | compact |
3 | audi | a4 quattro | 2008 | compact |
4 | audi | a6 quattro | 1999 | midsize |
... | ... | ... | ... | ... |
71 | volkswagen | jetta | 2008 | compact |
72 | volkswagen | new beetle | 1999 | subcompact |
73 | volkswagen | new beetle | 2008 | subcompact |
74 | volkswagen | passat | 1999 | midsize |
75 | volkswagen | passat | 2008 | midsize |
76 rows × 4 columns
# You can add the class column to your dataframe using merge
= pd.merge(missing_mpg, class_mpg, how="left", on=["manufacturer", "model", "year"])
merged_mpg merged_mpg
manufacturer | model | displ | year | cyl | trans | drv | cty | hwy | fl | class | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | audi | a4 | 1.8 | 1999 | 4 | auto(l5) | f | 18 | 29 | p | compact |
1 | audi | a4 | 1.8 | 1999 | 4 | manual(m5) | f | 21 | 29 | p | compact |
2 | audi | a4 | 2.0 | 2008 | 4 | manual(m6) | f | 20 | 31 | p | compact |
3 | audi | a4 | 2.0 | 2008 | 4 | auto(av) | f | 21 | 30 | p | compact |
4 | audi | a4 | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p | compact |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
229 | volkswagen | passat | 2.0 | 2008 | 4 | auto(s6) | f | 19 | 28 | p | midsize |
230 | volkswagen | passat | 2.0 | 2008 | 4 | manual(m6) | f | 21 | 29 | p | midsize |
231 | volkswagen | passat | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p | midsize |
232 | volkswagen | passat | 2.8 | 1999 | 6 | manual(m5) | f | 18 | 26 | p | midsize |
233 | volkswagen | passat | 3.6 | 2008 | 6 | auto(s6) | f | 17 | 26 | p | midsize |
234 rows × 11 columns